Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 345
1.
Physiol Plant ; 176(3): e14328, 2024.
Article En | MEDLINE | ID: mdl-38695265

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Acremonium , Homeostasis , Oxidation-Reduction , Plant Growth Regulators , Salt Tolerance , Signal Transduction , Acremonium/metabolism , Acremonium/physiology , Plant Growth Regulators/metabolism , Salt Tolerance/physiology , Brassica napus/microbiology , Brassica napus/metabolism , Brassica napus/physiology , Brassica napus/drug effects , Salt Stress/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Photosynthesis
2.
Plant Sci ; 326: 111531, 2023 Jan.
Article En | MEDLINE | ID: mdl-36343867

Plant architecture is a collection of genetically controlled crop productivity and adaptation. MicroRNAs (miRNAs) have been proved to function in various biological processes, but little is known about how miRNA regulates plant architecture in rapeseed (Brassica napus L.). In this study, four small RNA libraries and two degradome libraries from shoot apex of normal and rod-like plants were sequenced. A total of 639 miRNA precursors and 16 differentially expressed miRNAs were identified in this study. In addition, 322 targets were identified through degradome sequencing. Among them, 14 targets were further validated via RNA ligase-mediated 5' rapid amplification of cDNA ends. Transgenic approach showed that increased TCP4 activity in Arabidopsis resulted in premature onset of maturation and reduced plant size along with early flowering and shortened flowering time. miR319-OE lines in Brassica napus exhibited serrated leaves and abnormal development of shoot apical meristem (SAM), which led to the deformed growth of stem and reduced plant height. In conclusion, our study lays the foundation for elucidating miRNA regulate plant architecture and provides new insight into the miR319/TCP4 module regulates plant architecture in rapeseed.


Arabidopsis Proteins , Arabidopsis , Brassica napus , Brassica rapa , MicroRNAs , Brassica napus/physiology , Gene Expression Regulation, Plant , Brassica rapa/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , MicroRNAs/genetics , RNA, Plant/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/genetics
3.
Plant Cell Environ ; 46(2): 549-566, 2023 02.
Article En | MEDLINE | ID: mdl-36354160

Salt stress is a major limiting factor that severely affects the survival and growth of crops. It is important to understand the salt stress tolerance ability of Brassica napus and explore the underlying related genetic resources. We used a high-throughput phenotyping platform to quantify 2111 image-based traits (i-traits) of a natural population under three different salt stress conditions and an intervarietal substitution line (ISL) population under nine different stress conditions to monitor and evaluate the salt stress tolerance of B. napus over time. We finally identified 928 high-quality i-traits associated with the salt stress tolerance of B. napus. Moreover, we mapped the salt stress-related loci in the natural population via a genome-wide association study and performed a linkage analysis associated with the ISL population, respectively. These results revealed 234 candidate genes associated with salt stress response, and two novel candidate genes, BnCKX5 and BnERF3, were experimentally verified to regulate the salt stress tolerance of B. napus. This study demonstrates the feasibility of using high-throughput phenotyping-based quantitative trait loci mapping to accurately and comprehensively quantify i-traits associated with B. napus. The mapped loci could be used for genomics-assisted breeding to genetically improve the salt stress tolerance of B. napus.


Brassica napus , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Brassica napus/physiology , Chromosome Mapping/methods , Genome-Wide Association Study , Salt Tolerance/genetics
4.
Sci Rep ; 12(1): 20216, 2022 11 23.
Article En | MEDLINE | ID: mdl-36418358

Canola is one of the important oil crops and is considered the most promising oil source and adapts to reclaimed soil conditions. The current study aimed to evaluate the influence of yeast extract (YE) integrated with nitrogen (N) rates and treatments were arranged as follows: Control (without F0), 95 kg N ha-1 (F1), 120 kg N ha-1 (F2), 142 kg N ha-1 (F3), 95 kg N ha-1 + YE (F4), 120 kg N ha-1 + YE (F5) and 142 kg N ha-1 + YE (F6) on physico-chemical properties, yield and its components for three Canola genotypes i.e. AD201 (G1), Topaz and SemuDNK 234/84 under the sandy soil. In this work, Results reveal that increasing rates of Nitrogen fertilization from 95 kg N ha-1 to 142 kg N ha-1 have a great effect on physicochemical properties yield and its components. The result proved that 142 kg N ha-1 with yeast treatment was the best treatment for three Canola genotypes. Also, the result showed that seed yield was positively correlated with Chl. a/b ratio, plant height, number of branches/plant, number of pods/plant, and number of seeds/pod, and a strong negative correlation was detected between seed oil percentage when the amount of nitrogen fertilization applied without or with yeast extract is increased.


Brassica napus , Soil , Nitrogen , Sand , Brassica napus/physiology , Minerals , Fertility
5.
Plant Physiol Biochem ; 183: 120-127, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35580367

Waterlogging is a serious threat to agriculture that is expected to become more common due to climate change. It is well established that many plants are susceptible to waterlogging, including crops such as rapeseed. To investigate the responses and tolerance to waterlogging of the re-emerging oilseed crop camelina (Camelina sativa), camelina lines of different geographical origins were subjected to waterlogging. Camelina was very sensitive to waterlogging at vegetative growth stages, with a relatively short treatment of 4 days proving lethal for the plants. A treatment duration of 2 days resulted in growth inhibition and lower yields and was used to study the response of 8 different camelina lines to waterlogging at two different vegetative growth stages before bolting. Generally, younger plants (7-9 leaves) were more sensitive than older plants (15-16 leaves). In addition to morphological and agronomic traits, plants were phenotyped for physiological parameters such as chlorophyll content index and total antioxidant capacity of the leaves, which showed significant age-dependent changes due to waterlogging. These results underpin that waterlogging during the vegetative phase is a serious threat to camelina, which needs to be addressed by identifying and establishing tolerance to excess water to harness camelina's potential as a climate-smart crop.


Brassica napus , Brassica napus/physiology , Chlorophyll , Crops, Agricultural , Plant Leaves/physiology , Water/physiology
6.
BMC Plant Biol ; 22(1): 130, 2022 Mar 21.
Article En | MEDLINE | ID: mdl-35313826

BACKGROUND: The exchangeable aluminum (Al), released from the acid soils, is another addition to the environmental stress factors in the form of Al toxicity stress. Al stress affects the normal crop development and reduces the overall yield of rapeseed (Brassica napus L.). The response mechanism of plants to Al toxicity is complicated and difficult to understand with few QTL related studies in rapeseed under Al toxicity stress. RESULT: Using 200,510 SNPs developed by SLAF-seq (specific-locus amplified fragment sequencing) technology, we carried out the genome-wide association analysis (GWAS) in a population of 254 inbred lines of B. napus with large genetic variation and Al-tolerance differences. There were 43 SNPs significantly associated with eight Al-tolerance traits in the seedling stage were detected on 14 chromosomes, and 777 candidate genes were screened at the flanking 100 kb region of these SNPs. Moreover, RNA-seq detected 8291 and 5341 DEGs (the differentially expressed gene) in the Al -tolerant line (ATL) and -sensitive line (ASL), respectively. Based on integration of GWAS and RNA-seq analysis, 64 candidate genes from GWAS analysis differentially expressed at least once in 6 h vs 0 h or 24 h vs 0 h conditions in ATL or ASL. Moreover, four out of sixty-four candidate genes (BnaA03g30320D, BnaA10g11500D, BnaC03g38360D and BnaC06g30030D) were differentially expressed in both 6 h and 24 h compared to 0 h (control) conditions in both lines. The proposed model based on the candidate genes excavated in this study highlighted that Al stress disturb the oxidation-redox balance, causing abnormal synthesis and repair of cell wall and ABA signal transduction, ultimately resulting in inhibition of root elongation. CONCLUSIONS: The integration of GWAS and transcriptome analysis provide an effective strategy to explore the SNPs and candidate genes, which has a potential to develop molecular markers for breeding Al tolerant rapeseed varieties along with theoretical basis of molecular mechanisms for Al toxicity response of Brassica napus plants.


Adaptation, Physiological/genetics , Aluminum/toxicity , Brassica napus/genetics , Brassica napus/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide
7.
PeerJ ; 10: e12953, 2022.
Article En | MEDLINE | ID: mdl-35256917

Free-living organisms face multiple stressors in their habitats, and habitat quality often affects development and life history traits. Increasing pressures of agricultural intensification have been shown to influence diversity and abundance of insect pollinators, and it may affect their elemental composition as well. We compared reproductive success, body concentration of carbon (C) and nitrogen (N), and C/N ratio, each considered as indicators of stress, in the buff-tailed bumblebee (Bombus terrestris). Bumblebee hives were placed in oilseed rape fields and semi-natural old apple orchards. Flowering season in oilseed rape fields was longer than that in apple orchards. Reproductive output was significantly higher in oilseed rape fields than in apple orchards, while the C/N ratio of queens and workers, an indicator of physiological stress, was lower in apple orchards, where bumblebees had significantly higher body N concentration. We concluded that a more productive habitat, oilseed rape fields, offers bumblebees more opportunities to increase their fitness than a more natural habitat, old apple orchards, which was achieved at the expense of physiological stress, evidenced as a significantly higher C/N ratio observed in bumblebees inhabiting oilseed rape fields.


Brassica napus , Pollination , Humans , Bees , Animals , Insecta , Reproduction , Agriculture , Brassica napus/physiology , Stress, Physiological
8.
Environ Sci Pollut Res Int ; 29(30): 46357-46370, 2022 Jun.
Article En | MEDLINE | ID: mdl-35169945

Exploring and utilizing the agronomic potential of deep-underground is one of the ways to cope with the challenges of sudden environmental change on agriculture. Understanding the effects of environmental stresses on the morphological and physiological indicators of crop seeds after their storage deep-underground is crucial to developing and implementing strategies for agriculture in the deep-underground space. In this study, we stored canola seeds in tunnels with horizontal depths of 0, 240, 690, and 1410 m in a gold mine. Seeds in envelopes were retrieved at 42, 66, 90, and 227 days of storage, whereas seeds in sealed packages were retrieved at 66 and 227 days of storage. The germination tests were conducted to investigate the effects of storage depth, duration, and packing method on stored and non-stored seeds. Results showed that increased depth and duration reduced seed germination rate, with the germination and vigor indexes also descending to varying degrees. Increased hypocotyl length and biomass accumulation suggested that deep-underground environment had a more significant compensatory effect on seed germination. For all indicators, the performance of seeds sealed in packages was superior to those stored in envelopes. Regression analysis showed that it was difficult to obtain the optimal value of each indicator simultaneously. The successful germination experiment foreshadowed the possibilities of deep-underground agriculture in the future.


Brassica napus , Germination , Agriculture , Brassica napus/physiology , Gold/pharmacology , Seeds
9.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article En | MEDLINE | ID: mdl-35054964

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.


Brassica napus/physiology , Droughts , Metabolome , Minerals/metabolism , Plant Leaves/physiology , Plant Physiological Phenomena , Transcriptome , Computational Biology/methods , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Models, Biological , Stress, Physiological/genetics
10.
Plant Sci ; 315: 111128, 2022 Feb.
Article En | MEDLINE | ID: mdl-35067298

The PSII repair cycle is an important part of photosynthesis and is essential for high photosynthetic efficiency. The study of essential genes in Brassica napus provides significant potential for the improvement of gene editing technology and molecular breeding design. Previously, we identified a B. napus lethal mutant (7-521Y), which was controlled by two recessive genes (cyd1 and cyd2). BnaC06.FtsH1 was identified as a CYD1 target gene through functional verification. In the present study, we employed fine-mapping, genetic complementation, and CRISPR/Cas9 experiments to identify BnaA07.FtsH1 as the target gene of CYD2, functioning similarly to BnaC06.FtsH1. By analyzing CRISPR/Cas9 T1 generation plants of the Westar variety, we found that the copy number of FtsH1 was positively correlated with its biomass accumulation. Transcriptome analysis of cotyledons revealed differences in the expression of photosynthesis antenna and structural proteins between the mutant and complementary seedlings. Phylogenetic and chromosome linear analyses, based on 15 sequenced cruciferous species, revealed that Brassica alone had lost FtsH5 during evolution. This may be related to the fact that FtsH5 was located at the end of chromosome ABK8 in the ancestor species. Cloning and identification of BnaFtsH1s provide a deeper understanding of PSII repair cycle mechanisms and offer new insights for the improvement of photosynthetic efficiency and molecular breeding design in B. napus.


Brassica napus/genetics , Brassica napus/physiology , Genes, Essential , Metabolic Networks and Pathways/genetics , Photosystem II Protein Complex/genetics , China , Crops, Agricultural/genetics , Gene Deletion , Gene Editing , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , Genetic Variation , Phylogeny
11.
Plant Cell Rep ; 41(2): 337-345, 2022 Feb.
Article En | MEDLINE | ID: mdl-34817656

KEY MESSAGE: The application of flagellin 22 (flg22), the most widely studied PAMP, enhance crop cold tolerance. ICE1-CBF pathway and SA signaling is involved in the alleviation of cold injury by flg22 treatment. Pathogen infection cross-activates cold response and increase cold tolerance of host plants. However, it is not possible to use the infection to increase cold tolerance of field plants. Here flagellin 22 (flg22), the most widely studied PAMP (pathogen-associated molecular patterns), was used to mimic the pathogen infection to cross-activate cold response. Flg22 treatment alleviated the injury caused by freezing in Arabidopsis, oilseed and tobacco. In Arabidopsis, flg22 activated the expression of immunity and cold-related genes. Moreover, the flg22 induced alleviation of cold injury was lost in NahG transgenic line (SA-deficient), sid2-2 and npr1-1 mutant plants, and flg22-induced expression of cold tolerance-related genes, which indicating that salicylic acid signaling pathway is required for the alleviation of cold injury by flg22 treatment. In short flg22 application can be used to enhance cold tolerance in field via a salicylic acid-depended pathway.


Cold-Shock Response/physiology , Flagellin/pharmacology , Pathogen-Associated Molecular Pattern Molecules/immunology , Plant Immunity/physiology , Seedlings/physiology , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Brassica napus/drug effects , Brassica napus/physiology , Chlorophyll/metabolism , Cold-Shock Response/immunology , Crops, Agricultural/immunology , Freezing , Gene Expression Regulation, Plant/drug effects , Intramolecular Transferases/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plants, Genetically Modified , Salicylic Acid/metabolism , Seedlings/drug effects , Nicotiana/drug effects , Nicotiana/physiology
12.
Bioengineered ; 12(2): 9341-9355, 2021 12.
Article En | MEDLINE | ID: mdl-34951555

Drought is one of the most important abiotic stressors that affect crop yield. Therefore, the aim of the present study was to investigate correlations between germination-stage drought tolerance and the microscopic testa (i.e., seed coat) characteristics (color and papilla morphology) and imbibition abilities of 35 rapeseed (Brassica napus L.) accessions. After 2 h imbibition, seed water uptake (fresh weight increase) was significantly positively correlated with testa hue (HHSB), brightness (BHSB,), blue (BRGB), and lightness (L*), with correlation coefficients of 0.38, 0.34, 0.53, and 0.36, respectively, and significantly negatively correlated with saturation (SHSB), greenness-redness (a*), blueness-yellowness (b*), magenta (M), and yellow components (Y), with correlation coefficients of -0.53, -0.40, -0.53, -0.39, and -0.55, respectively. Furthermore, 5-h seed water uptake was significantly positively correlated with number of papillae (No.P), mean papillae area (APA), the papillae area ratio (PAR), gray value of red channel of papillae, with correlation coefficients of 33, 0.36, 0.43, and 0.43, respectively. Under drought conditions, genotypes with more rapid water absorption exhibited higher germination rates and stronger drought tolerance, and the germination rate and drought tolerance of black-seeded accessions were highest, followed by red-seeded accessions and then yellow-seeded accessions, which exhibited the lowest germination rate and drought tolerance. Germination rate was significantly negatively correlated with BRGB, HHSB, L*, Dg, and Db and significantly positively correlated with SHSB and Y, regardless of drought conditions. At the germination stage, DbTP was negatively correlated with drought tolerance.


Adaptation, Physiological , Brassica napus/anatomy & histology , Brassica napus/physiology , Droughts , Germination , Pigmentation , Seeds/anatomy & histology , Water/metabolism , Ecotype , Electric Conductivity , Principal Component Analysis
13.
PLoS One ; 16(12): e0260960, 2021.
Article En | MEDLINE | ID: mdl-34928963

Environmental stresses may alter the nutritional profile and economic value of crops. Chemical fertilizers and phytohormones are major sources which can enhance the canola production under stressful conditions. Physio-biochemical responses of canola altered remarkably with the use of nitrogen/phosphorus/potassium (N/P/K) fertilizers and plant growth regulators (PGRs) under drought stress. The major aim of current study was to evaluate nutritional quality and physio-biochemical modulation in canola (Brassica napus L.) from early growth to seed stage with NPK and PGRs in different water regimes. To monitor biochemical and physiological processes in canola, two season field experiment was conducted as spilt plot under randomized complete block design (RCBD) with four treatments (Control, Chemical fertilizers [N (90 kg/ha), P and K (45 kg ha-1)], PGRs; indole acetic acid (IAA) 15g ha-1, gibberellic acid (GA3) 15g ha-1 and the combination of NPK and PGRs] under different irrigations regimes (60, 100, 120, 150 mm evaporations). Water stress enhanced peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), soluble sugar, malondialdehyde (MDA), proline contents as well as leaf temperature while substantially reduced leaf water contents (21%), stomatal conductance (50%), chlorophyll contents (10-67%), membrane stability index (24%) and grain yield (30%) of canola. However, the combined application of NPK and PGR further increased the enzymatic antioxidant pool, soluble sugars, along with recovery of leaf water contents, chlorophyll contents, stomatal conductance and membrane stability index but decreased the proline contents and leaf temperature at different rate of evaporation. There is positive interaction of applied elicitors to the water stress in canola except leaf area. The outcomes depicted that the combination of NPK with PGRs improved the various morpho-physiological as well as biochemical parameters and reduced the pressure of chemical fertilizers cost about 60%. It had also reduced the deleterious effect of water limitation on the physiology and grain yield and oil contents of canola in field experiments.


Brassica napus/physiology , Droughts , Fertilizers , Plant Growth Regulators/pharmacology , Brassica napus/chemistry , Brassica napus/drug effects , Crops, Agricultural/chemistry , Crops, Agricultural/drug effects , Crops, Agricultural/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Potassium/metabolism , Stress, Physiological
14.
Molecules ; 26(23)2021 Nov 28.
Article En | MEDLINE | ID: mdl-34885803

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


Cellulases/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Fungi/physiology , Plant Diseases/microbiology , Brassica napus/microbiology , Brassica napus/physiology , Cell Wall/metabolism , Cell Wall/microbiology , Fungi/enzymology , Host-Pathogen Interactions , Hydrolysis , Malus/microbiology , Malus/physiology , Polysaccharides/metabolism , Triticum/microbiology , Triticum/physiology , Wood/microbiology , Wood/physiology
15.
Sci Rep ; 11(1): 23382, 2021 12 03.
Article En | MEDLINE | ID: mdl-34862452

Rapeseed, a major oil crop in the world, is easily affected by low-temperature stress. A low temperature delays seed germination and increases seedling mortality, adversely affecting rapeseed growth and production. In the present study, a tolerant cultivar (Huyou21) was crossed with a susceptible genotype (3429) to develop a mapping population consisting of 574 F2 progenies and elucidate the genetic mechanisms of seed germination under low temperatures. Two quantitative trait loci (QTL) for low-temperature germination (LTG) were detected, one on chromosome A09 (named qLTGA9-1) and the other on chromosome C01 (named qLTGC1-1), using the QTL-seq approach and confirmed via linkage analysis in the mapping population. Further, qLTGA9-1 was mapped to a 341.86 kb interval between the SSR markers Nys9A212 and Nys9A215. In this region, 69 genes including six specific genes with moderate or high effect function variants were identified based on the Ningyou7 genome sequence. Meanwhile, qLTGC1-1 was mapped onto a 1.31 Mb interval between SSR markers Nys1C96 and Nys1C117. In this region, 133 genes including five specific genes with moderate effect function variants were identified. These specific genes within the two QTL could be used for further studies on cold tolerance and as targets in rapeseed breeding programs.


Brassica napus/physiology , Chromosome Mapping/methods , Plant Proteins/genetics , Quantitative Trait Loci , Brassica napus/genetics , Cold Temperature , Genetic Linkage , Germination , High-Throughput Nucleotide Sequencing , Plant Breeding , Whole Genome Sequencing
16.
Plant Sci ; 313: 111062, 2021 Dec.
Article En | MEDLINE | ID: mdl-34763855

As an ancient and conserved plant microRNA (miRNA) family, miR169 targets nuclear factor Y subunit alpha (NF-YA) family members. The miR169-NF-YA module is associated with plant development and various stress responses. However, the function of miR169 in response to drought stress in rapeseed (Brassica napus L.) is unclear. In the present study, we showed that miR169n acted as a negative regulator of drought resistance in rapeseed by targeting a nuclear factor Y-A gene, NF-YA8. miR169n was strongly down-regulated by drought stress. Expression of a miR169n target mimicry construct (MIM169n) which functioned as a sponge to trap miR169n resulted in enhanced resistance of transgenic plants to both osmotic stress at the post-germination stage and drought stress at the seedling stage. MIM169n plants had a higher relative water content (RWC) and proline content, lower relative electrolyte leakage (REL), and showed higher antioxidative capability compared with those of control (CK) plants under drought stress. Moreover, NF-YA8 was verified as a target of miR169n, and overexpression of NF-YA8 led to improved tolerance of rapeseed to osmotic stress at the post-germination stage. Overall, our findings implied that the miR169n-NF-YA8 regulatory module could serve as a potential target for genetic improvement of drought resistance in B. napus.


Brassica napus/genetics , Dehydration/genetics , Dehydration/physiopathology , Droughts , MicroRNAs/genetics , Stress, Physiological/genetics , Brassica napus/physiology , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant , Stress, Physiological/physiology
17.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34769127

Leaf trait is an important target trait in crop breeding programs. Moderate leaf curling may be a help for improving crop yield by minimizing the shadowing by leaves. Mining locus for leaf curling trait is of significance for plant genetics and breeding researches. The present study identified a novel rapeseed accession with up-curling leaf, analyzed the up-curling leaf trait inheritance, and fine mapped the locus for up-curling leaf property (Bnuc3) in Brassica napus. Genetic analysis revealed that the up-curling leaf trait is controlled by a single dominant locus, named BnUC3. We performed an association study of BnUC3 with single nucleotide polymorphism (SNP) markers using a backcross population derived from the homozygous up-curling leaf line NJAU-M1295 and the canola variety 'zhongshuang11' with typical flat leaves, and mapped the BnUC3 locus in a 1.92 Mb interval of chromosome A02 of B. napus. To further map BnUC3, 232 simple sequence repeat (SSR) primers and four pairs of Insertion/Deletion (InDel) primers were developed for the mapping interval. Among them, five SSR markers and two InDel markers were polymorphic. By these markers, the mapping interval was narrowed to 92.0 kb using another F2 population. This fine mapping interval has 11 annotated genes among which BnaA02T0157000ZS were inferred to be candidate casual genes for up-curling leaf based on the cloned sequence analysis, gene functionality, and gene expression analysis. The current study laid a foundational basis for further elucidating the mechanism of BnUC3 and breeding of variety with up-curling leaf.


Brassica napus/physiology , Plant Leaves/physiology , Chromosome Mapping , Genes, Plant
18.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34639007

Among several mechanisms involved in the plant stress response, synthesis of guanosine tetra and pentaphosphates (alarmones), homologous to the bacterial stringent response, is of crucial importance. Plant alarmones affect, among others, photosynthetic activity, metabolite accumulation, and nutrient remobilization, and thus regulate plant growth and development. The plant RSH (RelA/SpoT homolog) genes, that encode synthetases and/or hydrolases of alarmones, have been characterized in a limited number of plant species, e.g., Arabidopsis thaliana, Oryza sativa, and Ipomoea nil. Here, we used dry-to-wet laboratory research approaches to characterize RSH family genes in the polyploid plant Brassica napus. There are 12 RSH genes in the genome of rapeseed that belong to four types of RSH genes: 6 RSH1, 2 RSH2, 3 RSH3, and 1 CRSH. BnRSH genes contain 13-24 introns in RSH1, 2-6 introns in RSH2, 1-6 introns in RSH3, and 2-3 introns in the CRSH genes. In the promoter regions of the RSH genes, we showed the presence of regulatory elements of the response to light, plant hormones, plant development, and abiotic and biotic stresses. The wet-lab analysis showed that expression of BnRSH genes is generally not significantly affected by salt stress, but that the presence of PGPR bacteria, mostly of Serratia sp., increased the expression of BnRSH significantly. The obtained results show that BnRSH genes are differently affected by biotic and abiotic factors, which indicates their different functions in plants.


Bacteria , Brassica napus/physiology , Cytoskeletal Proteins/genetics , Plant Physiological Phenomena , Plant Proteins/genetics , Salinity , Symbiosis , Brassica napus/classification , Cytoskeletal Proteins/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism , Regulatory Sequences, Nucleic Acid
19.
Plant Cell Rep ; 40(11): 2063-2080, 2021 Nov.
Article En | MEDLINE | ID: mdl-34417832

KEY MESSAGE: Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.


Brassica napus/drug effects , Brassica napus/physiology , Chromium/toxicity , Melatonin/pharmacology , Photosynthesis/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Electron Transport/drug effects , Enzymes/metabolism , Feedback, Physiological , Genotype , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Proline/metabolism , Stress, Physiological/drug effects
20.
Int J Mol Sci ; 22(9)2021 May 06.
Article En | MEDLINE | ID: mdl-34066572

The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.


Anion Transport Proteins/genetics , Brassica napus/genetics , Brassica napus/physiology , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Nitrogen/deficiency , Plant Proteins/genetics , Amino Acid Sequence , Anion Transport Proteins/chemistry , Anion Transport Proteins/metabolism , Brassica napus/drug effects , DNA Copy Number Variations/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Nitrate Transporters , Nitrates/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Domains , Species Specificity , Synteny/genetics
...